4 Year Bachelor of Science/ Arts (MATHEMATICS) CBCS

List of Major Core Courses (MJC):

No. 1.		Code	Name of the Course	Credits	Marks
1.	Ι	MJC-01	Algebra	6	100
2.	II	MJC-02	Calculus & Geometry	6	100
3.	III	MJC-03	Real Analysis	5	100
4.	III	MJC-04	Ordinary Differential Equations	4	100
5.	IV	MJC-05	Theory of Real Functions	5	100
6.	IV	MJC-06	Group Theory	5	100
7.	IV	MJC-07	Partial Differential Equations	5	100
8.	V	MJC-08	Ring Theory and Linear Algebra-I	5	100
9.	V	MJC-09	Multivariate Calculus	5	100
10.	VI	MJC-10	Complex Analysis	4	100
11.	VI	MJC-11	Metric Space	5	100
12.	VI	MJC-12	Riemann Integration and Series of Functions	5	100
13.	VII	MJC-13	Ring Theory and Linear Algebra-II	5	100
14.	VII	MJC-14	Research Methodology	5	100
15.	VII	MJC-15	Numerical Methods	6	100
16.	VIII	MJC-16	Mathematical Finance	4	100

(2) 14/06/23

Mily 6 23

54067023

4 Year Bachelor of Science/ Arts (MATHEMATICS) CBCS

List of Minor Core Courses (MIC):

Sl. No.	Sem.	Course Code	Name of the Course	Credits	Marks
1.	I	MIC-01	Algebra	3	100
2.	II	MIC-02	Calculus & Geometry	3	100
3.	III	MIC-03	Real Analysis	3	100
4.	IV	MIC-04	Ordinary Differential Equations	3	100
5.	V	MIC-05	Theory of Real Functions	3	100
6.	V	MIC-06	Group Theory	3	100
7.	VI	MIC-07	Partial Differential Equations	3	100
8.	VI	MIC-08	Ring Theory and Linear Algebra-I	3	100
9.	VII	MIC-09	Multivariate Calculus	4	100
10.	VIII	MIC-10	Complex Analysis	4	100
7			Sub Total = 32		

Garingh 14/16/23 14/6/27

JN 6 702

4-Years Bachelor of Science/Arts (MATHEMATICS) CBCS Syllabus

Semester-I

MJC-01: Algebra (06 credits) (Lecture: 60)

Course Objectives: The primary objective of this course is to introduce the basic tools of theory of equations, complex numbers, number theory and matrices to understand their linkage to the real-world problems.

Course Learning Outcomes: This course will enable the students to:

- i) Employ De Moivre's theorem in a number of applications to solve numerical problems.
- ii) Apply Euclid's algorithm and backwards substitution to find greatest common divisor.
- iii) Recognize consistent and inconsistent systems of linear equations by the row echelon form of the augmented matrix, using rank.

Course Contents:

Unit 1 (Lecture: 10)

Polar representation of complex numbers, De -Moivre's theorem and its applications, Logarithms of complex quantities, Hyperbolic functions, Gregory series, Summation of series, Resolution into factors.

Unit 2 (Lecture: 12)

Cartesian product of sets, Equivalence relations, partition, partial and total order relation Functions, Composition of functions, Invertible functions, Cardinality of a set, Countable and Uncountable sets, Cantor's theorem,

Unit 3 (Lecture: 12)

Well-ordering property of positive integers, Division algorithm, Euclidean algorithm, Fundamental Theorem of Arithmetic, Modular arithmetic and basic properties of congruences, Principle of mathematical induction.

Unit 4 (Lecture: 12)

Matrices, Operation on Matrices, Kinds of matrices, Transpose, symmetric & skew symmetric Matrices, Hermitian, skew Hermitian Matrices, Adjoint and Inverse of a matrix, orthogonal matrix, Solution of a system of linear equations by matrix methods. Echelon forms, Rank of a matrix.

(51 DKingh

1 14/6/23

3406/2023

Unit 5 (Lecture: 14)

Fundamental theorem of algebra, Relation between roots and coefficients of a polynomial equation, Symmetric Function of roots, Transformation of equation, Descartes rule of signs, Solution of Cubic equation (Cardon's method) and bi quadratic equation (Euler's method).

References:

- 1. Dickson, Leonard Eugene (1922). First Course in The Theory of Equations. John Wiley & Sons, Inc. New York.
- 2. Kolman, Bernard, & Hill, David R. (2001). *Introductory Linear Algebra with Applications* (7thed.). Pearson Education, Delhi. First Indian Reprint 2003.

Additional Readings:

- 1. Andrilli, Stephen, & Hecker, David (2016). *Elementary Linear Algebra* (5thed.). Academic Press, Elsevier India Private Limited.
- 2. Burton, David M. (2007). Elementary Number Theory (7thed.). Tata Mc-Graw Hill Edition, Indian Reprint.
- 3. K.K.Jha, Advanced Set Theory.Nav BharatPrakashan Patna
- 4. M.L.Khanna, Theory of Equations, Jai Prakash Nath& Co. Merrut (U.P.)
- 5. Lalji Prasad, Matrices, Paramount Publications Patna
- 6. Dasgupta, Trigonometry, Bharti Bhawan Patna.